
1

Optimizing with Defined Operators

By Stephen M. Mansour

Abstract
Mathematical programming can be used to optimize. The typical mathematical notation for optimization
is: max !"# subject to $# ≤ & for linear programming (LP) 1 or min '(#) subject to ((#) ≥0 for non-linear programming (NLP). We can create similar expressions using standard APL syntax.

We propose the following syntax for linear programming (LP) :

 NS ← ⌊ optimize C x subjectTo A x ≥ B ⍝ Expression 1

 NS ← ⌈ optimize C x subjectTo A x ≤ B ⍝ Expression 2

We propose the following syntax for non-linear programming (NLP)

 NS ← ⌊ optimize f x subjectTo g x ≥ 0 ⍝ Expression 3

 NS ← ⌈ optimize f x subjectTo g x ≤ 0 ⍝ Expression 4

Parsing Expressions 2 and 3 above, we arrive at the following:

 NS ← (⌈ optimize) (C x subjectTo) (A x ≤) B ⍝ LP

 NS ← (⌊ optimize) (f x subjectTo) (g x ≥) 0 ⍝ NLP
 -------- ----------- -------------- ------- --------- -----
 ↑ ↑ ↑ ↑ ↑
 Result Runs the builds a creates a right
 Namespace LP/NLP tableau namespace arg

We need to apply some sleight-of-hand to make the syntax work. Since x represents a vector of decision
variables, it is unknown at the beginning of the optimization process. So, we don’t need to assign any
values to it. As the middle item in a function expression, x must be either a function in a 3-train (fork),
or a dyadic operator. If x is the middle item in a fork, we would be required to keep the parentheses; and
parsing would be difficult. If we make x a dyadic operator, binding rules eliminate the parenthesis and
preserve the arguments. Let’s look first at the syntax of the rightmost function expression:

 NS ← (A x ≤) b ⍝ LP
 NS ← (G x ≥) 0 ⍝ NLP
 ↑ ↑ ↑ ↑ ↑
 Result Left operator right right
 Namespace operand operand argument

1 In mathematics a vector is represented as an nx1 matrix. The notation !′ in mathematics mean the transpose
of the column vector c which results in a 1xn row vector !′ . In APL, this is not necessary because inner product
handles vectors and matrices in a more natural way.

2

Note that the left operand is the array A in the LP case, and the function-array G in the NLP case. The
function derived from this takes a vector right argument b representing the right-hand-sides of the
constraint inequalities, or the scalar 0 in the NLP case. The result of this derived function is a namespace
containing the following items:

LP: Linear Program NLP: Non-Linear Program
NS.A: matrix of constraint coefficients NS.G function array
NS.b: vector of right hand sides NS.b 0
NS.rel: relation function NS.rel: relation function

The middle function expression takes this namespace NS as a right argument, and builds a tableau from
the feasible region defined by the variables A and b and the function rel in the namespace. (For NLP,
the feasible region is defined by the function G.)

 NS ← (c x subjectTo) NS ⍝ LP
 NS ← (f x subjectTo) NS ⍝ NLP
 ------- -- -------- ---------- ---------
 ↑ ↑ ↑ ↑ ↑
 Updated Left operator right Parameter
 Namespace operand operand Namespace

Notice we are using the same operator x as in the rightmost function expression. But this function
expression takes a namespace as its right argument, whereas previously the right argument was a simple
numeric vector (or scalar). The operator x can check the name class of its right argument to determine
how to proceed.

 NS ← (⌈ optimize) NS
 NS ← (⌊ optimize) NS
 --- ---- -------- ---
 ↑ ↑ ↑ ↑
 Solution Left operator right
 Namespace operand argument

We now apply the operator optimize function to the namespace created by applying the x operator
twice. The left operand ⌊ or ⌈ determines whether to minimize or maximize the objective. The
result is the updated operator which now contains the following variables:

NS.Decision ⍝ Optimal value of Decision Variables (Vector)
NS.Objective ⍝ Value of objective function (Scalar)
NS.ShadowPrice ⍝ Increase/Decrease in objective function (vector)
NS.ReducedCost ⍝ Profit contribution minus resource use (vector)

Example 1: Blue Ridge Hot Tubs
A manufacturer produces three types of hot tubs:

Hot Tub Brand: Aqua-Spa Hydro-Luxe Typhoon-Lagoon Resources
Available Unit Profit: $350 $300 $320

Pumps Required 1 1 1 200
Labor Required 9 hours 6 hours 8 hours 1566
Tubing Needed 12 feet 16 feet 13 feet 2880

3

We formulate the problem as follows:
 -. = Number of Aqua-Spas to produce -/ = Number of Hydro-Luxes to produce -0 = Number of Typhoon-Lagoons to produce

Maximize 350-. + 300-/ + 320-0
Subject to: -. + -/ + -0 ≤ 200 9-. + 6-/ + 8-0 ≤ 1,566 12-. + 16-/ + 13-0 ≤ 2,880 -.,-/,-0 ≥ 0
Using matrix notation, we can define the problem mathematically as follows:
 # = 1-.-/-02 ! = 13503003202 $ = 1 1 1 19 6 812 16 132 & = 1 200156628802

 Maximize !′# subject to $# ≤ &

We can now do the same thing in APL and obtain a solution:

 C←350 300 320 ⍝ Objective coefficients
 ⎕← A←3 3⍴1 1 1 9 6 8 12 16 13 ⍝ Constraint coefficients
 1 1 1
 9 6 8
12 16 13
 B←200 1566 2880 ⍝ Resource limitations
 NS←⌈ optimize C x subjectTo A x ≤ B ⍝ Perform the LP
 NS.Decision ⍝ Produce 122 Aqua Spas and 78 Hydro-Luxes
122 78 0
 NS.Objective ⍝ Total profit $66,100
66100
 NS.ShadowPrice ⍝ Each add’l pump contributes $200 to profit
200 16.66666667 0 ⍝ Each add’l labor hour contributes $16.67 profit
 NS.ReducedCost ⍝ Each Typhoon-Lagoon produced reduces profit by $13.33
0 0 ¯13.33333333

Example 2: Weedwacker Company – Make or Buy
The company produces two types of law trimmers; an electric and a gas model. The table below
indicates the requirements and production capability:

 Electric Trimmers Gas Trimmers Total Hours Available
Production 0.20 hours 0.40 hours 10,000
Assembly 0.30 hours 0.50 hours 15,000
Packaging 0.10 hours 0.10 hours 5,000
Cost to Make $55 $85
Cost to Buy $67 $95

4

Number required 15,000 30,000
We formulate this problem as follows:

 M1= number of electric trimmers to make M2= number of gas trimmers to make
 B1= number of electric trimmers to buy B2= number of gas trimmers to buy

 Minimize 55M1 + 85 M2 + 67 B1 + 95 B2

 ST M1 + B1 = 30,000

 M2 + B2 = 15,000
 0.20M1 + 0.40M2 10,000
 0.30M1 + 0.50M2 15,000
 0.10M1 + 0.10M2 5,000
 Mi, Bi 0
We solve this problem in Dyalog APL as follows:

 C←55 85 67 95 ⍝ Objective coefficients
 ⎕←A←5 4⍴1 0 1 0 0 1 0 1 .2 .4 0 0 .3 .5 0 0 .1 .1 0 0
1 0 1 0
0 1 0 1
0.2 0.4 0 0
0.3 0.5 0 0
0.1 0.1 0 0
 B←30000 15000 10000 15000 5000 ⍝ Resource constraints
 rel←=,=,≤,≤,≤ ⍝ Relations (function-train)
 NS←minimize C x subjectTo A x rel B
 NS.Decision
30000 10000 0 5000 ⍝ Make 30K electric and 10K gas trimmers; buy 5K gas
 NS.Objective ⍝ Total cost $2,975,000
2975000
 NS.ShadowPrice ⍝ Each addt’l production hour reduces cost by $25.00
60 95 ¯25 0 0
 NS.ReducedCost ⍝ Increased cost to buy one more Electric Trimmer $7.00.
0 0 7 0

Cover Functions
For mathematical programming purists, one may want to define the functions maximize and minimize as
follows:

maximize ← ⌈ optimize
minimize ← ⌊ optimize

That way one could enter the following APL expression which mirrors the standard mathematical
expression:

 NS ← maximize c x subjectTo A x ≤ b

5

The functions lp, ip, tp and nlp were designed to encapsulate the objectives and constraints in a
namespace and update it with the values of the decision variables as well as other items such as shadow
prices and reduced costs. The syntax is very simple:

 NS ← lp NS ⍝ Linear program
 NS ← ip NS ⍝ Integer program
 NS ← tp NS ⍝ Transportation problem |

Example 3: Garden City Beach – How Many Lifeguards?
Each summer, the city hires lifeguards to assign five consecutive days each week followed by two days
off. The city’s insurance company requires the minimum number of lifeguards each day:

Day Sunday
Day 0

Monday
Day 1

Tuesday
Day 2

Wednesday
Day 3

Thursday
Day 4

Friday
Day 5

Saturday
Day 6

Lifeguards
Required

18 17 16 16 16 14 19

The city would like to determine the minimum number of lifeguards that will have to be hired. Let

Let -3 = Number of workers who start on the following Day: i.e. Day 7|i+1

For example -. = Number of workers who start on Tuesday (Day 2)

We formulate the problem thus:

MIN X0 +X1 + X2 + X3 + X4 + X5 + X6
 ST X1 +X2 + X3 + X4 + X5 18
 X2 + X3 + X4 + X5 + X6 17

X0 + X3 +X4 + X5 + X6 16
X0 +X1 + X4 + X5 + X6 16
X0 +X1 + X2 + X5 + X6 16
X0 +X1 + X2 + X3 + X6 14
X0 +X1 + X2 + X3 + X4 19
Xi 0

 We can create a namespace to contain all the components:

 EX3←⎕ns '' ⍝ Create namespace
 ⎕←EX3.A←(-⍳7)⌽⍤0 1⊢1 5 1/0 1 0
0 1 1 1 1 1 0
0 0 1 1 1 1 1
1 0 0 1 1 1 1
1 1 0 0 1 1 1
1 1 1 0 0 1 1
1 1 1 1 0 0 1
1 1 1 1 1 0 0

 EX3.B←18 17 16 16 16 14 19 ⍝ Constraint right hand side

6

 ⎕←EX3.C←7/1 ⍝ Objective coefficients
1 1 1 1 1 1 1
 EX3.optimum←⌊ ⍝ Objective is minimum required lifeguards

 EX3.rel←≥,≥,≥,≥,≥,≥,≥ ⍝ Constraints are greater than or equal
 EX3←LP EX3 ⍝ Perform the linear optimization

 EX3.Decision ⍝ Lifeguards required from each “shift”
4.6 1.6 5.6 1.6 5.6 3.6 0.6

 EX3.Objective ⍝ Minimum required lifeguards
23.2

The problem is that we get a fractional solution, whereas we only hire full-time lifeguards. We could
round up the number of workers but that would not be optimal:

 ⌈EX3.Decision ⍝ Round up each shift
5 2 6 2 6 4 1
 +/⌈EX3.Decision ⍝ Total number of lifeguards

26

We really want an integer solution. To accomplish this, we use integer programming by including the
following constraint:

Xi 0 & integer

 EX3←ip EX3 ⍝ Run integer program
 EX3.Decision ⍝ Lifeguards required for each shift
3 3 5 0 8 2 3
 EX3.Objective ⍝ Total number of lifeguards needed.
24

Example 4: Transportation Problem – Bonner Electronics
Bonner Electronics is planning to ship product from its Manufacturing plants in Minneapolis, Pittsburgh
and Tucson to four warehouses in Atlanta, Boston, Chicago and Denver. The following table shows the
unit shipping cost between each plant and warehouse:

 Warehouse
Plant Atlanta Boston Chicago Denver Supply
Minneapolis $0.60 $0.56 $0.22 $.40 9.000
Pittsburgh 0.36 0.30 0.28 0.58 12.000
Tucson 0.65 0.68 0.55 0.42 13,000

Demand 7,500 8,500 9.500 8,000
How many units must be shipped from each plant to each warehouse? There are three Supply nodes
and 4 demand nodes; each of these represents a constraint. The decision variables are represented by
arcs connecting each supply node to each demand node. We could set this up as a traditional LP, but it
is easier to treat this as a specialized network problem known as the transportation problem.

7

 Supply←9000 12000 13000
 Demand←7500 8500 9500 8000

 ⎕←UnitCost←3 4⍴0.6 0.56 0.22 0.4 0.36 0.3 .28 .58 0.65 0.68 0.55 0.42
0.6 0.56 0.22 0.4
0.36 0.3 0.28 0.58
0.65 0.68 0.55 0.42

 (UnitCost,Supply)⍪Demand,0 ⍝ Assemble matrix
 0.6 0.56 0.22 0.4 9000
 0.36 0.3 0.28 0.58 12000
 0.65 0.68 0.55 0.42 13000
7500 8500 9500 8000 0
 EX4←TP (UnitCost,Supply)⍪Demand,0 ⍝ Transportation Problem
 EX4.Decision ⍝ Solution e.g. ship 4000 units from Tucson to Atlanta
 0 0 9000 0
3500 8500 0 0
4000 0 500 8000

 EX4.Objective ⍝ Minimum total cost $12,025
12025

Conclusion
Various types of linear programming problems can be solved using APL operators. The functions are
located in a workspace called ALPS (A Linear Programming System). References for each example are
listed below. The non-linear portion is not yet available as it is still under design and development.

References

[Example 1] Ragsdale, Spreadsheet Modeling & Decision Analysis, 7th Ed. Cengage, 2015p. 150

[Example 2] Ibid, Chapter 3, Problem 22, p. 119

[Example 3] Ibid, Chapter 6, Problem 8, p. 292

[Example 4] Powell, Baker, Management Science, 3rd Ed., Wiley, 2009, P. 282

