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Optimizing with Defined Operators 

By Stephen M. Mansour 

Abstract 
Mathematical programming can be used to optimize. The typical mathematical notation for optimization 
is:    max !"#  subject to  $# ≤ & for linear programming (LP) 1  or min '(#) subject to ((#) ≥0 for non-linear programming (NLP).  We can create similar expressions using standard APL syntax. 

We propose the following syntax for linear programming (LP) : 

             NS ← ⌊ optimize C x subjectTo A x ≥ B   ⍝ Expression 1 

           NS ← ⌈ optimize C x subjectTo A x ≤ B    ⍝ Expression 2 

We propose the following syntax for non-linear programming (NLP) 

           NS ←  ⌊ optimize f x subjectTo g x ≥ 0     ⍝ Expression 3 

           NS ←  ⌈ optimize f x subjectTo g x ≤ 0     ⍝ Expression 4 

Parsing Expressions 2 and 3 above, we arrive at the following: 

       NS ←   (⌈ optimize) (C x subjectTo) (A x ≤)     B      ⍝ LP 

     NS ←   (⌊ optimize) (f x subjectTo) (g x ≥)     0      ⍝ NLP 
  --------  -----------  --------------  ------- ---------  ----- 
     ↑        ↑             ↑            ↑          ↑ 
   Result     Runs the     builds a    creates a   right 
 Namespace    LP/NLP       tableau     namespace   arg 
 
We need to apply some sleight-of-hand to make the syntax work.  Since x represents a vector of decision 
variables, it is unknown at the beginning of the optimization process.  So, we don’t need to assign any 
values to it.  As the middle item in a function expression, x must be either a function in a 3-train (fork), 
or a dyadic operator.  If x is the middle item in a fork, we would be required to keep the parentheses; and 
parsing would be difficult.  If we make x a dyadic operator, binding rules eliminate the parenthesis and 
preserve the arguments.  Let’s look first at the syntax of the rightmost function expression:      

             NS           ←  (  A        x        ≤   )      b        ⍝ LP  
         NS        ←  ( G        x        ≥   )      0        ⍝ NLP  
         ↑              ↑        ↑        ↑          ↑ 
        Result         Left    operator right      right 
       Namespace      operand           operand    argument 
  

 
1 In mathematics a vector is represented as an nx1 matrix.  The notation !′ in mathematics mean the transpose 
of the column vector c which results in a 1xn row vector !′ .  In APL, this is not necessary because inner product 
handles vectors and matrices in a more natural way.  
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Note that the left operand is the array A in the LP case, and the function-array G in the NLP case. The 
function derived from this takes a vector right argument b representing the right-hand-sides of the 
constraint inequalities, or the scalar 0 in the NLP case. The result of this derived function is a namespace 
containing the following items:   

LP:  Linear Program NLP: Non-Linear Program 
NS.A:   matrix of constraint coefficients NS.G     function array  
NS.b:    vector of right hand sides NS.b      0 
NS.rel:   relation function  NS.rel:   relation function 

The middle function expression takes this namespace NS as a right argument, and builds a tableau from 
the feasible region defined by the variables A and b and the function rel in the namespace.  (For NLP, 
the feasible region is defined by the function G.)      

       NS ← ( c        x       subjectTo )    NS           ⍝ LP  
       NS ← ( f        x       subjectTo )    NS           ⍝ NLP  
  -------    --     --------  ----------     --------- 
       ↑      ↑        ↑            ↑          ↑ 
 Updated     Left    operator     right      Parameter 
 Namespace  operand             operand     Namespace 

Notice we are using the same operator x as in the rightmost function expression.  But this function 
expression takes a namespace as its right argument, whereas previously the right argument was a simple 
numeric vector (or scalar). The operator x can check the name class of its right argument to determine 
how to proceed.   

        NS ←  ( ⌈      optimize )   NS 
        NS ←  ( ⌊      optimize )   NS 
       ---    ----     --------    ---  
        ↑       ↑         ↑         ↑ 
    Solution   Left     operator   right 
    Namespace  operand             argument 
 
We now apply the operator optimize function to the namespace created by applying the x operator 
twice.  The left operand ⌊ or ⌈ determines whether to minimize or maximize the objective.   The 
result is the updated operator which now contains the following variables: 

NS.Decision     ⍝ Optimal value of Decision Variables (Vector) 
NS.Objective    ⍝ Value of objective function (Scalar) 
NS.ShadowPrice  ⍝ Increase/Decrease in objective function (vector) 
NS.ReducedCost  ⍝ Profit contribution minus resource use (vector) 

Example 1:  Blue Ridge Hot Tubs  
A manufacturer produces three types of hot tubs:   

Hot Tub Brand: Aqua-Spa Hydro-Luxe Typhoon-Lagoon Resources 
Available Unit Profit: $350 $300 $320 

Pumps Required 1 1 1 200 
Labor Required 9 hours 6 hours 8 hours 1566 
Tubing Needed 12 feet 16 feet 13 feet 2880 
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We formulate the problem as follows: 
 -. = Number of Aqua-Spas to produce -/ = Number of Hydro-Luxes to produce -0 = Number of Typhoon-Lagoons to produce 
 
Maximize 350-. + 300-/ + 320-0 
Subject to:    -. +   -/ +      -0 ≤    200                      9-. +   6-/ +   8-0 ≤ 1,566                    12-. + 16-/ + 13-0 ≤ 2,880                                           -.,-/,-0 ≥        0 
Using matrix notation, we can define the problem mathematically as follows: 
 # = 1-.-/-02      ! = 13503003202       $ = 1 1 1 19 6 812 16 132        & = 1 200156628802 
 
                      Maximize !′# subject to $# ≤ & 
 
 
We can now do the same thing in APL and obtain a solution:  
 
      C←350 300 320                        ⍝ Objective coefficients 
      ⎕← A←3 3⍴1 1 1 9 6 8 12 16 13        ⍝ Constraint coefficients  
 1  1  1 
 9  6  8 
12 16 13  
      B←200 1566 2880                      ⍝ Resource limitations 
      NS←⌈ optimize C x subjectTo A x ≤ B  ⍝ Perform the LP  
      NS.Decision     ⍝ Produce 122 Aqua Spas and 78 Hydro-Luxes  
122 78 0                                   
      NS.Objective    ⍝ Total profit $66,100 
66100 
      NS.ShadowPrice  ⍝ Each add’l pump contributes $200 to profit  
200 16.66666667 0     ⍝ Each add’l labor hour contributes $16.67 profit 
      NS.ReducedCost  ⍝ Each Typhoon-Lagoon produced reduces profit by $13.33 
0 0 ¯13.33333333 

Example 2:  Weedwacker Company – Make or Buy  
The company produces two types of law trimmers; an electric and a gas model.   The table below 
indicates the requirements and production capability:  

 Electric Trimmers Gas Trimmers Total Hours Available 
Production 0.20 hours 0.40 hours 10,000 
Assembly 0.30 hours 0.50 hours 15,000 
Packaging 0.10 hours 0.10 hours 5,000 
Cost to Make $55 $85  
Cost to Buy $67 $95  



4 
 

Number required 15,000 30,000  
We formulate this problem as follows: 

      M1= number of electric trimmers to make   M2= number of gas trimmers to make 
  B1= number of electric trimmers to buy     B2= number of gas trimmers to buy 
 
  Minimize  55M1 + 85 M2 + 67 B1 + 95 B2 

  ST M1 + B1 = 30,000 

  M2 + B2 = 15,000 
  0.20M1 +  0.40M2  10,000 
  0.30M1 +  0.50M2  15,000 
  0.10M1 +  0.10M2  5,000 
  Mi, Bi  0 
We solve this problem in Dyalog APL as follows: 
 
     C←55 85 67 95                  ⍝ Objective coefficients 
       ⎕←A←5 4⍴1 0 1 0 0 1 0 1 .2 .4 0 0 .3 .5 0 0 .1 .1 0 0 
1   0   1 0 
0   1   0 1 
0.2 0.4 0 0 
0.3 0.5 0 0 
0.1 0.1 0 0  
     B←30000 15000 10000 15000 5000 ⍝ Resource constraints  
     rel←=,=,≤,≤,≤                  ⍝ Relations (function-train) 
     NS←minimize C x subjectTo A x rel B  
     NS.Decision 
30000 10000 0 5000  ⍝ Make 30K electric and 10K gas trimmers; buy 5K gas  
     NS.Objective   ⍝ Total cost $2,975,000 
2975000 
     NS.ShadowPrice ⍝ Each addt’l production hour reduces cost by $25.00 
60 95 ¯25 0 0       
       NS.ReducedCost ⍝ Increased cost to buy one more Electric Trimmer $7.00.  
0 0 7 0 

Cover Functions 
For mathematical programming purists, one may want to define the functions maximize and minimize as 
follows: 

maximize ← ⌈ optimize 
minimize ← ⌊ optimize 

 

That way one could enter the following APL expression which mirrors the standard mathematical 
expression: 

      NS ← maximize c x subjectTo A x ≤ b   
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The functions lp, ip, tp and nlp were designed to encapsulate the objectives and constraints in a 
namespace and update it with the values of the decision variables as well as other items such as shadow 
prices and reduced costs.  The syntax is very simple: 

        NS ← lp NS          ⍝ Linear program 
        NS ← ip NS          ⍝ Integer program 
        NS ← tp NS          ⍝ Transportation problem                      | 

Example 3:  Garden City Beach – How Many Lifeguards? 
Each summer, the city hires lifeguards to assign five consecutive days each week followed by two days 
off.  The city’s insurance company requires the minimum number of lifeguards each day: 

Day Sunday 
Day 0 

Monday 
Day 1 

Tuesday 
Day 2 

Wednesday 
Day 3 

Thursday 
Day 4 

Friday 
Day 5 

Saturday 
Day 6 

Lifeguards 
Required 

18 17 16 16 16 14 19 

  

The city would like to determine the minimum number of lifeguards that will have to be hired. Let  

Let -3 = Number of workers who start on the following Day:  i.e. Day 7|i+1 

For example -. = Number of workers who start on Tuesday (Day 2) 

We formulate the problem thus:     

MIN  X0 +X1 + X2 + X3 + X4 + X5 + X6   
  ST X1 +X2 + X3 + X4 + X5  18 
   X2 + X3 + X4 + X5 + X6  17 

X0 + X3 +X4 + X5 + X6  16 
X0 +X1 + X4 + X5 + X6  16 
X0 +X1 + X2 + X5 + X6  16 
X0 +X1 + X2 + X3 + X6  14 
X0 +X1 + X2 + X3 + X4  19 
Xi  0  

 

 We can create a namespace to contain all the components: 

       EX3←⎕ns ''                     ⍝ Create namespace 
      ⎕←EX3.A←(-⍳7)⌽⍤0 1⊢1 5 1/0 1 0 
0 1 1 1 1 1 0 
0 0 1 1 1 1 1 
1 0 0 1 1 1 1 
1 1 0 0 1 1 1 
1 1 1 0 0 1 1 
1 1 1 1 0 0 1 
1 1 1 1 1 0 0 

      EX3.B←18 17 16 16 16 14 19  ⍝ Constraint right hand side   
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      ⎕←EX3.C←7/1                 ⍝ Objective coefficients 
1 1 1 1 1 1 1     
      EX3.optimum←⌊               ⍝ Objective is minimum required lifeguards 

      EX3.rel←≥,≥,≥,≥,≥,≥,≥       ⍝ Constraints are greater than or equal 
      EX3←LP EX3                  ⍝ Perform the linear optimization  

     EX3.Decision                 ⍝ Lifeguards required from each “shift” 
4.6 1.6 5.6 1.6 5.6 3.6 0.6 

     EX3.Objective                ⍝ Minimum required lifeguards 
23.2  
   
The problem is that we get a fractional solution, whereas we only hire full-time lifeguards.  We could 
round up the number of workers but that would not be optimal: 

     ⌈EX3.Decision                ⍝ Round up each shift 
5 2 6 2 6 4 1 
     +/⌈EX3.Decision              ⍝ Total number of lifeguards 

26       

We really want an integer solution.  To accomplish this, we use integer programming by including the 
following constraint: 

Xi  0 & integer 

      EX3←ip EX3                  ⍝ Run integer program 
      EX3.Decision                ⍝ Lifeguards required for each shift 
3 3 5 0 8 2 3             
      EX3.Objective               ⍝ Total number of lifeguards needed. 
24 

Example 4:  Transportation Problem – Bonner Electronics 
Bonner Electronics is planning to ship product from its Manufacturing plants in Minneapolis, Pittsburgh 
and Tucson to four warehouses in Atlanta, Boston, Chicago and Denver.  The following table shows the 
unit shipping cost between each plant and warehouse: 

 Warehouse  
Plant Atlanta Boston Chicago Denver Supply 
Minneapolis $0.60 $0.56 $0.22 $.40 9.000 
Pittsburgh  0.36  0.30  0.28  0.58 12.000 
Tucson  0.65  0.68  0.55  0.42 13,000 

Demand 7,500 8,500 9.500 8,000  
How many units must be shipped from each plant to each warehouse?  There are three Supply nodes 
and 4 demand nodes; each of these represents a constraint.  The decision variables are represented by 
arcs connecting each supply node to each demand node.  We could set this up as a traditional LP, but it 
is easier to treat this as a specialized network problem known as the transportation problem.        
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     Supply←9000 12000 13000 
     Demand←7500 8500 9500 8000 

     ⎕←UnitCost←3 4⍴0.6 0.56 0.22 0.4 0.36 0.3 .28 .58 0.65 0.68 0.55 0.42 
0.6  0.56 0.22 0.4  
0.36 0.3  0.28 0.58 
0.65 0.68 0.55 0.42 
   

     (UnitCost,Supply)⍪Demand,0            ⍝ Assemble matrix 
   0.6     0.56    0.22    0.4   9000 
   0.36    0.3     0.28    0.58 12000 
   0.65    0.68    0.55    0.42 13000 
7500    8500    9500    8000        0   
   EX4←TP (UnitCost,Supply)⍪Demand,0      ⍝ Transportation Problem 
   EX4.Decision      ⍝ Solution e.g. ship 4000 units from Tucson to Atlanta 
   0    0 9000    0 
3500 8500    0    0 
4000    0  500 8000 

 
      EX4.Objective                        ⍝ Minimum total cost $12,025 
12025 

Conclusion 
Various types of linear programming problems can be solved using APL operators.  The functions are 
located in a workspace called ALPS (A Linear Programming System).  References for each example are 
listed below. The non-linear portion is not yet available as it is still under design and development.   
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